Species distribution modeling (SDM) has been widely used to predict the distribution of invasive plant species based on bioclimatic variables. However, the specific selection of these variables may affect the performance of SDM. This investigation elucidates a new bioclimate variable dataset (i.e., CMCC-BioClimInd) for its use in SDM. The predictive performance of SDM that includes WorldClim and CMCC-BioClimInd was evaluated by AUC and omission rate and the explanatory power of both datasets was assessed by the jackknife method. Furthermore, the ODMAP protocol was used to record CMCC-BioClimInd to ensure reproducibility. The results indicated that CMCC-BioClimInd effectively simulates invasive plant species’ distribution. Based on the contribution rate of CMCC-BioClimInd to the distribution of invasive plant species, it was inferred that the modified and simplified continentality and Kira warmth index from CMCC-BioClimInd had a strong explanatory power. Under the 35 bioclimatic variables of CMCC-BioClimInd, alien invasive plant species are mainly distributed in equatorial, tropical, and subtropical regions. We tested a new bioclimate variable dataset to simulate the distribution of invasive plant species worldwide. This method has great potential to improve the efficiency of species distribution modeling, thereby providing a new perspective for risk assessment and management of global invasive plant species.