2023
DOI: 10.3389/frobt.2023.1106439
|View full text |Cite
|
Sign up to set email alerts
|

Using convolutional neural networks to detect GNSS multipath

Abstract: Global Navigation Satellite System (GNSS) multipath has always been extensively researched as it is one of the hardest error sources to predict and model. External sensors are often used to remove or detect it, which transforms the process into a cumbersome data set-up. Thus, we decided to only use GNSS correlator outputs to detect a large-amplitude multipath, on Galileo E1-B and GPS L1 C/A, using a convolutional neural network (CNN). This network was trained using 101 correlator outputs being used as a theore… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 34 publications
0
0
0
Order By: Relevance