SummaryMeiosis involves a dramatic reorganization of the genetic material, along with changes in the architecture of the nucleoplasm and cytoplasm. In the opisthokonts, nuclear envelope and meiotic chromosome behavior are coordinated by forces generated in the cytoplasm and transferred to the nucleus by the nuclear-envelope protein linkers SUN and KASH. During meiotic prophase I, the telomere bouquet arrangement has roles in interhomolog recognition, pairing, synapsis, interlock resolution and homologous chromosome recombination. The maize desynaptic (dy) mutant is defective in homologous chromosome synapsis, recombination, telomere-nuclear envelope interactions and chromosome segregation. A detailed three-dimensional cytological analysis of dy revealed telomere misplacement during the bouquet stage, synaptic irregularities, nuclear envelope distortion and chromosome bridges at anaphase I. Using linkage and B-A translocation mapping, we placed dy on the long arm of chromosome 3, genetic bin 3.06. SSR marker analysis narrowed the mapping interval to 9 cM. Candidate genes in this region include a PM3-type SUN domain protein, ZmSUN3. No obvious genetic lesions were found in the ZmSUN3 allele of dy, but a conspicuous splice variant, ZmSUN3-sv1, was observed in mRNA from dy. The variant message is predicted to result in the synthesis of a truncated ZmSUN3 protein lacking two C-terminal transmembrane domains. Other potential candidate genes relevant to the documented phenotypes were also considered. In summary, this study reveals that dy causes disruption of a central meiotic pathway connecting nuclear envelope integrity to telomere localization and synapsis during meiotic prophase.