A significant deposition of black shales occurred during the Mesoproterozoic Oxygenation Event (MOE). In order to investigate the hydrocarbon generation potential and organic matter enrichment mechanism of these shale deposits, we studied the Xiamaling Formation shale in the North China region as a representative sample of the Mesoproterozoic shale. The research involved organic petrology, organic geochemistry, mineralogy, and elemental geochemistry. The following observations were made: (1) The depositional environment of the Xiamaling Formation shale can be categorized as either oxic or anoxic, with the former having shallow depositional waters and high deposition rates, while the latter has deeper depositional waters and slower deposition rates. (2) Anoxic shales exhibited significantly better hydrocarbon generation potential compared to shales deposited in oxic environments, although the latter still demonstrated high hydrocarbon generation potential. (3) Shales deposited in anoxic environments displayed higher paleoproductivity compared to those deposited in oxic environments. The high deposition rate in oxic environments slowed the decomposition and mineralization of organic matter, leading to the formation of high-quality shales. In contrast, the strong paleoproductivity, along with favorable preservation conditions, accounted for the high hydrocarbon potential of anoxic shales.