Identification of the malignancy of tissues from Histopathological images has always been an issue of concern to doctors and radiologists. This task is time-consuming, tedious and moreover very challenging. Success in finding malignancy from Histopathological images primarily depends on long-term experience, though sometimes experts disagree on their decisions. However, Computer Aided Diagnosis (CAD) techniques help the radiologist to give a second opinion that can increase the reliability of the radiologist's decision. Among the different image analysis techniques, classification of the images has always been a challenging task. Due to the intense complexity of biomedical images, it is always very challenging to provide a reliable decision about an image. The state-of-the-art Convolutional Neural Network (CNN) technique has had great success in natural image classification. Utilizing advanced engineering techniques along with the CNN, in this paper, we have classified a set of Histopathological Breast-Cancer (BC) images utilizing a state-of-the-art CNN model containing a residual block. Conventional CNN operation takes raw images as input and extracts the global features; however, the object oriented local features also contain significant information-for example, the Local Binary Pattern (