Leukemia is a rare but fatal cancer of the blood. This cancer arises from abnormal bone marrow cells and requires prompt diagnosis for effective treatment and positive patient prognosis. Traditional diagnostic methods (e.g., microscopy, flow cytometry, and biopsy) pose challenges in both accuracy and time, demanding an inquisition on the development and use of deep learning (DL) models, such as convolutional neural networks (CNN), which could allow for a faster and more exact diagnosis. Using specific, objective criteria, DL might hold promise as a tool for physicians to diagnose leukemia. The purpose of this review was to report the relevant available published literature on using DL to diagnose leukemia. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, articles published between 2010 and 2023 were searched using Embase, Ovid MEDLINE, and Web of Science, searching the terms "leukemia" AND "deep learning" or "artificial neural network" OR "neural network" AND "diagnosis" OR "detection." After screening retrieved articles using pre-determined eligibility criteria, 20 articles were included in the final review and reported chronologically due to the nascent nature of the phenomenon. The initial studies laid the groundwork for subsequent innovations, illustrating the transition from specialized methods to more generalized approaches capitalizing on DL technologies for leukemia detection. This summary of recent DL models revealed a paradigm shift toward integrated architectures, resulting in notable enhancements in accuracy and efficiency. The continuous refinement of models and techniques, coupled with an emphasis on simplicity and efficiency, positions DL as a promising tool for leukemia detection. With the help of these neural networks, leukemia detection could be hastened, allowing for an improved longterm outlook and prognosis. Further research is warranted using real-life scenarios to confirm the suggested transformative effects DL models could have on leukemia diagnosis.