2022
DOI: 10.36227/techrxiv.19790236.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Using Deep Learning Models and Wearable Sensors to Predict Prosthetic Ankle Torques

Abstract: Inverse dynamics from motion capture is the most common technique for analyzing human biomechanics. However, this method is time-intensive, limited to a gait laboratory setting, and requires a large array of reflective markers to be attached to the body. A practical alternative must be developed to provide biomechanical information to high-bandwidth prosthesis control systems to enable predictive controllers. In this study, we applied deep learning to build dynamical system models capable of accurately estimat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?