2011
DOI: 10.1051/mmnp/20116606
|View full text |Cite
|
Sign up to set email alerts
|

Using DNA Self-assembly Design Strategies to Motivate Graph Theory Concepts

Abstract: Abstract. A number of exciting new laboratory techniques have been developed using the WatsonCrick complementarity properties of DNA strands to achieve the self-assembly of graphical complexes. For all of these methods, an essential step in building the self-assembling nanostructure is designing the component molecular building blocks. These design strategy problems fall naturally into the realm of graph theory. We describe graph theoretical formalism for various construction methods, and then suggest several … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2011
2011
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 21 publications
0
2
0
Order By: Relevance
“…In a laboratory setting, an attempt to produce a target structure can result in an excess of costly branched junction molecules. Mathematical research done within the flexible tile model seeks to find a pot with the minimum numbers of bond-edge types and tile types required to construct a given target complex [6] [8]. We aim to find an accurate edge labeling of a specific graph with as few different half-edge labels as possible.…”
Section: Flexible Tile Based Modelmentioning
confidence: 99%
“…In a laboratory setting, an attempt to produce a target structure can result in an excess of costly branched junction molecules. Mathematical research done within the flexible tile model seeks to find a pot with the minimum numbers of bond-edge types and tile types required to construct a given target complex [6] [8]. We aim to find an accurate edge labeling of a specific graph with as few different half-edge labels as possible.…”
Section: Flexible Tile Based Modelmentioning
confidence: 99%
“…opening and closing of an active site of an enzyme and how that might be used to predict intermediate configurations of catalysis; Ellis-Monaghan and Pangborn (2011) [53] use graph theory to offer physical builders of DNA structures how to chose sequences that will self-assemble into particular three-dimensional lattices such as cubes, tetrahedra, and octahedral; and, Robic and Jungck (2011) [54] demonstrate the power of mathematical manipulatives in helping students understand topological processes accompanying replication, recombination and repair.…”
Section: Mathematical Challenges In Biology Educationmentioning
confidence: 99%