Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Opioid overdose accounts for nearly 75,000 deaths per year in the United States, representing a leading cause of mortality amongst the prime working age population (25-54 years). At overdose levels, opioid-induced respiratory depression becomes fatal without timely administration of the rescue drug naloxone. Currently, overdose survival relies entirely on bystander intervention, requiring a nearby person to discover and identify the overdosed individual, and have immediate access to naloxone to administer. Government efforts have focused on providing naloxone in abundance but do not address the equally critical component for overdose rescue: a willing and informed bystander. To address this unmet need, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose, with the ability to simultaneously contact first-responders. We present three Naloximeter platforms, for both fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that broadly benefit a susceptible population recovering from opioid use disorder.
Opioid overdose accounts for nearly 75,000 deaths per year in the United States, representing a leading cause of mortality amongst the prime working age population (25-54 years). At overdose levels, opioid-induced respiratory depression becomes fatal without timely administration of the rescue drug naloxone. Currently, overdose survival relies entirely on bystander intervention, requiring a nearby person to discover and identify the overdosed individual, and have immediate access to naloxone to administer. Government efforts have focused on providing naloxone in abundance but do not address the equally critical component for overdose rescue: a willing and informed bystander. To address this unmet need, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose, with the ability to simultaneously contact first-responders. We present three Naloximeter platforms, for both fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that broadly benefit a susceptible population recovering from opioid use disorder.
Opioid overdose accounts for nearly 75,000 deaths per year in the United States, now a leading cause of mortality among young people aged 18 to 45 years. At overdose levels, opioid-induced respiratory depression becomes fatal without the administration of naloxone within minutes. Currently, overdose survival relies on bystander intervention, requiring a nearby person to find the overdosed individual and have immediate access to naloxone to administer. To circumvent the bystander requirement, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose while simultaneously contacting first responders. We present three Naloximeter platforms, for fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that can broadly benefit a susceptible population recovering from opioid use disorder.
This article will use syndemic theory to identify and analyze overlapping health and social conditions, focusing specifically on how gender-based violence is systemically interconnected with contemporary public health issues. The overdose death crisis that continues to afflict Canadian populations is not an isolated health issue. Across Canada, it is intertwined with mental health, HIV/AIDS, COVID-19 and structural violence—the chronic and systemic disadvantages affecting those living in poverty and oppressive circumstances. Opioid use is an often-avoidant coping strategy for many experiencing the effects of trauma, relentless fear, pain, ill health and social exclusion. In particular, Indigenous and non-Indigenous women’s experiences with opioid addiction are entangled with encounters with gender based-violence, poverty and chronic ailments within structurally imposed processes and stressors shaped by a history of colonialism, ruptured lifeways and Western ways of knowing and doing, leading to disproportionate harms and occurrences of illness. While biomedical models of comorbidity and mortality approach substance misuse, gender-based violence and major infectious diseases such as HIV/AIDS and COVID-19 as distinct yet compounding realities, this article argues that these conditions are synergistically interrelated via the critical/reflexive lens of syndemic frameworks. Through secondary research using academic, media and policy sources from the past decade in Canada, complemented by prior ethnographic research, the synergistic connections among opioid addiction, gender-based violence and the effects of the COVID pandemic on diverse women will be shown to be driven by socio-structural determinants of health including poverty, intergenerational trauma, the legacy of colonialism and Western optics. Together, they embody a contemporary Canadian syndemic necessitating coordinated responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.