2022
DOI: 10.1111/ner.13506
|View full text |Cite
|
Sign up to set email alerts
|

Using Extracochlear Multichannel Electrical Stimulation to Relieve Tinnitus and Reverse Tinnitus-Related Auditory-Somatosensory Plasticity in the Cochlear Nucleus

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 39 publications
0
5
0
2
Order By: Relevance
“…In our view, this means that the neuronal noise is maximally upregulated (i.e., disinhibited, cf. Chen et al, 2022) around the TP, providing maximal hearing threshold improvement around that frequency range but maybe not limited to it (cf. Introduction).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…In our view, this means that the neuronal noise is maximally upregulated (i.e., disinhibited, cf. Chen et al, 2022) around the TP, providing maximal hearing threshold improvement around that frequency range but maybe not limited to it (cf. Introduction).…”
Section: Discussionmentioning
confidence: 99%
“…In case of a reduced cochlear input due to inner hair cell damage (Tziridis et al, 2021) or denervation (‘hidden hearing loss’, Kujawa & Liberman, 2009), the added neuronal noise can lift the otherwise subthreshold cochlear input above the threshold (=SR), thereby improving hearing thresholds (Gollnast et al, 2017) or even speech perception (Schilling et al, 2022). For SR to optimize information transmission in the described way, the amplitude of the noise (i.e., the spike rate of the incoming uncorrelated neuronal noise) has to be constantly adapted to changing levels of cochlear input, most probably due to modulation of the inhibition (Chen et al, 2022). In our model, this optimization is achieved by maximizing the autocorrelation (AC) of the DCN output, that is, the spike rate (Krauss et al, 2017).…”
Section: Introductionmentioning
confidence: 99%
“…1 Ausschnittsvergrößerung). Die Quelle für das neuronale Rauschen ist dabei hochwahrscheinlich im somatosensorischen System verortet [ 3 , 11 , 22 ], was z. B. auch erklärt, warum viele Patienten ihr Ohrgeräusch durch Anspannen der Kiefermuskulatur modulieren können.…”
Section: Das Erlanger Modell Der Tinnitusentstehungunclassified
“…Der Koinzidenzdetektor schließlich hemmt nun seinerseits den somatosensorischen Input [ 3 ]. Je größer der Informationsgehalt des DCN-Outputs ist, desto weniger Rauschen muss aus dem somatosensorischen System dem cochleären Input hinzuaddiert werden, um eine optimale Informationsübertragung zu gewährleisten.…”
Section: Das Erlanger Modell Der Tinnitusentstehungunclassified
“…In case of a reduced cochlear input due to inner hair cell damage (Tziridis et al , 2021) or denervation ("hidden hearing loss", Kujawa & Liberman, 2009), the added neuronal noise can lift the otherwise subthreshold cochlear input above the threshold (= SR), thereby improving hearing thresholds (Gollnast et al , 2017) or even speech perception (Schilling et al , 2022). For SR to optimize information transmission in the described way, the amplitude of the noise (i.e., the spike rate of the incoming uncorrelated neuronal noise) has to be constantly adapted to changing levels of cochlear input, most probably due to modulation of the inhibition (Chen et al , 2022). In our model, this optimization is achieved by maximizing the autocorrelation (AC) of the DCN output, i.e., the spike rate (Krauss et al, 2017).…”
Section: Introductionmentioning
confidence: 99%