<span lang="EN-GB">Educational data mining has gained tremendous interest from researchers across the globe. Using data mining techniques in the field of education several significant findings have been made. Accurate academic performance estimation is a challenging task. In this study we have developed a novel model to estimate the academic performance of students. Techniques like conversion of categorical attributes into dummy variables, classification, two staged feature selection and an improved differential evolutionary algorithm were used. Our proposed model outperformed existing models of students’ academic performance determination and gave a new direction to it. The proposed model can help not only to reduce the number of academic failures but also help to comprehend the factors contributing to a student’s academic performance (poor, average or outstanding).Computer</span>