The engineering design process can produce stress that endures even after it has been completed. This may be particularly true for students who engage with the process as novices. However, it is not known how individual components of the design process induce stress in designers. This study explored the cognitive experience of introductory engineering design students during concept generation, concept selection and physical modelling to identify stress signatures for these three design activities. Data were collected for the design activities using pre- and post-task surveys. Each design activity produced distinct markers of cognitive experience and a unique stress signature that was stable across design activity themes. Rankings of perceived sources of stress also differed for each design activity. Students, however, did not perceive any physiological changes due to the stress of design for any of the design activities. Findings indicate that physical modelling was the most stressful for students, followed by concept generation and then concept selection. Additionally, recommendations for instructors of introductory engineering design courses were provided to help them apply the results of this study. Better understanding of the cognitive experience of students during design can support instructors as they learn to better teach design.