Proceedings of the 16th International Congress of the Brazilian Geophysical Society&Expogef 2019
DOI: 10.22564/16cisbgf2019.221
|View full text |Cite
|
Sign up to set email alerts
|

Using graphics processing units on the cloud to accelerate and reduce processing cost of parameters estimation of seismic processing algorithm

Abstract: Contents of this paper were reviewed by the Technical Committee of the 16 th International Congress of The Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of The Brazilian Geophysical Society is prohibited.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
1
0
5

Year Published

2021
2021
2021
2021

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 11 publications
0
1
0
5
Order By: Relevance
“…Therefore, using the cloud is not as simple as getting equivalent hardware to what is available locally in a cluster. This work is the expansion of a previous work published in a conference (Okita et al, 2019) that had the objective of using GPUs to reduce both the time and execution price of seismic processing algorithms in the Amazon Web Services Elastic Computing Cloud (AWS EC2). This work aims to test how GPU accelerated instances perform in a different traveltime other than the ones shown in the original paper and explore the performance increase when using multiple CPU instances and multiple GPUs.…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, using the cloud is not as simple as getting equivalent hardware to what is available locally in a cluster. This work is the expansion of a previous work published in a conference (Okita et al, 2019) that had the objective of using GPUs to reduce both the time and execution price of seismic processing algorithms in the Amazon Web Services Elastic Computing Cloud (AWS EC2). This work aims to test how GPU accelerated instances perform in a different traveltime other than the ones shown in the original paper and explore the performance increase when using multiple CPU instances and multiple GPUs.…”
Section: Introductionmentioning
confidence: 99%
“…No nosso trabalho, seguiremos tais orientações. Outros trabalhos importantes que buscaram explorar as propriedades de paralelização do problema foram propostos por Gimenes et al [24], Cardoso da Silva [12], Marchetti et al [27], Ni et al [31], Hu et al [23], Zeng et al [38] e Okita et al em duas ocasiões [32,33]. No primeiro, os autores propõem a procura pelos parâmetros P(t 0 , m 0 , h 0 ) a partir da discretização linear do intervalo de busca, isto é, para um dado parâmetro cujos valores devem pertencer no intervalo [p min , p max ], discretiza-se tal intervalo em n partes e testa-se cada um dos valores gerados para cada ponto (t 0 , m 0 , h 0 ).…”
Section: Capítulo 3 Trabalhos Relacionadosunclassified
“…Okita et al [33], por sua vez, utilizaram o modelo de programação SPITS e OpenCL para acelerar os métodos Zero Offset Common Reflection Surface, non-hyperbolic Zero Offset Common Reflection Surface e Finite Offset Common Reflection Surface em uma nuvem computacional. Neste trabalho, os autores focaram suas análises majoritariamente nos recursos financeiros economizados pela sua implementação.…”
Section: Capítulo 3 Trabalhos Relacionadosunclassified
See 2 more Smart Citations