The detection of subgrade distresses in ballastless track railways poses a formidable challenge due to the presence of steel interference caused by the unique characteristics of high-speed rail track slabs and the dense arrangement of the steel reinforcement mesh within them. Here, we aim to examine the influence of varying distribution patterns of steel reinforcement in ballastless tracks on the detection of subgrade distresses using ground-penetrating radar. Through a combination of on-site testing and forward modeling, this paper analyzes the interference of steel reinforcement on the detection of voids beneath the steel using electromagnetic waves. The research findings reveal that incident electromagnetic waves from the ground-penetrating radar experience attenuation near steel reinforcements, with only a fraction able to penetrate the surface layer and propagate into the subsurface through interstitial gaps between the reinforcing bars. Furthermore, this influence diminishes as the spacing between the reinforcing bars increases and the bar diameter decreases. When steel bars are distributed on the upper and lower layers, the detection results of the lower void are most significantly influenced by the interlocking of the steel bars in the two layers. These research results can offer theoretical and technical support for the detection of ailments in high-speed railway subgrades.