The reliable operation of photovoltaic (PV) power generation systems is related to the security and stability of the power grid and is the focus of current research. At present, the reliability evaluation of PV power generation systems is mostly calculated by applying the standard failure rate of each component, ignoring the impact of thermal environment changes on the failure rate. This paper will use the fault tree theory to establish the reliability assessment method of PV power plants, model the PV power plants working in the variable environment through the hardware-in-the-loop simulation system, and analyze the influence of the thermal characteristics of the inverter’s key components on the reliability of the PV power plant. Studies have shown that the overall reliability of bus capacitors, inverters, and PV power plants is reduced by 18.4%, 30%, and 18.7%, respectively, compared to when the thermal characteristics of bus capacitors are not considered. It can be seen that thermal attenuation has a great influence on the reliability of the PV power generation system.