Abstract. Earthquake site-response is an essential part of seismic hazard assessment, especially in densely populated areas. The shallow geology of the Netherlands consists of a very heterogeneous soft sediment cover, which has a strong effect on seismic wave propagation and in particular on the amplitude of ground shaking, resulting in significant damage on structures despite the fact that the events are of small magnitude. Even though it is a low-to-moderate seismicity area, the seismic risk cannot be neglected, in particular, because shallow induced earthquakes occur. The aim of this study is to establish a nationwide site-response zonation by using the lithostratigraphy, earthquake- and ambient vibration recordings. In the first step, we constrain the parameters (velocity contrast and shear-wave velocity) that are indicative of ground-motion amplification in the Groningen area. For this, we combine ambient vibration and earthquake recordings using resp. the horizontal-to-vertical spectral ratio method (HVSR), borehole empirical transfer functions (ETFs) and amplification factors (AFs). This enables us to define an empirical relationship between measured earthquake amplification from the ETF and AF, and amplification estimated with the HVSR derived from the ambient seismic field. Therewith, we show that the HVSR can be used as a first proxy for amplification. Subsequently, HVSR curves throughout the Netherlands are estimated. The resulting peak amplitudes largely coincide with the in-situ lithostratigraphic sequences and the presence of a strong velocity contrast in the near-surface. Next, sediment profiles representing the Dutch shallow subsurface are categorized into five classes, where each class is representing a level of expected amplification. The mean amplification for each class, and its variability, is quantified using 66 sites with measured earthquake amplification (ETF and AF) and 115 sites with HVSR curves. The site-response (amplification) zonation map for the Netherlands is designed by transforming published geological 3D grid cell models into the five classes and an AF is assigned to most of the classes. This presented site-response assessment on a national scale is important for a first identification of regions with increased seismic hazard potential, for example at locations with mining or geothermal energy activities.