2013
DOI: 10.4028/www.scientific.net/amm.333-335.1422
|View full text |Cite
|
Sign up to set email alerts
|

Using Hybrid Fuzzy Neural Network to Improve the Accuracy of Air Traffic Flow Forecasts

Abstract: Air traffic is increasing worldwide at a steady annual rate, and airport congestion is already a major issue for air traffic controllers. The traditional method of traffic flow prediction is difficult to adapt to complex air traffic conditions. Due to its self-learning, self-organizing, self-adaptive and anti-jamming capability, the hybrid fuzzy neural network can predict more effectively the air traffic flow than the traditional methods can. A good method for training is an important problem in the prediction… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 2 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?