“…Forest structure parameters and tree phenotypic features are predicted using machine learning techniques with input data gathered from LiDAR, RGB, and Multi-spectral cameras (Shin et al, 2018;McClelland et al, 2019;Puliti et al, 2019;Abdollahnejad and Panagiotidis, 2020;Fan et al, 2020;Imangholiloo et al, 2020;Ahmad et al, 2021;Cai et al, 2021;Neuville et al, 2021;Sangjan and Sankaran, 2021;Yu et al, 2021). Predictions of leaf moisture, chlorophyll, and nitrogen content, have been achieved using machine learning methods (Watt et al, 2020;Lou et al, 2021;Raddi et al, 2021;Raj et al, 2021;Narmilan et al, 2022;Zhuo et al, 2022). The most common predictor is linear regression, but other common ones are support vector machine regression, random forest regression, and gradient boost machines (McClelland et al, 2019;Blanco-Sacristań et al, 2021;Fraser and Congalton, 2021b;Yu et al, 2021;Torre-Tojal et al, 2022).…”