“…Drone detection based on visual data (image or video) can be performed using handcrafted feature-based methods [ 8 , 21 , 22 ] and deep learning-based [ 6 , 23 , 24 , 25 ] algorithms. Handcrafted feature-based methods are based on traditional machine learning algorithms by using traditional descriptors such as scale-invariant feature transform (SIFT), histogram of oriented gradients (HOG), Haar, local binary pattern (LBP), deformable parts model (DPM), and generic Fourier descriptor (GFD) that provide low-level handcrafted features (edges, drops, blobs, and color information) and classical classifiers (support vector machine (SVM), AdaBoost)), whereas the second category relies on the learned features using two-stage (region-based convolutional neural network (R-CNN), Fast R-CNN, Faster R-CNN, and Mask R-CNN) and single-stage (single shot detector (SSD), RetinaNet, and you only look once (YOLO)) deep object detectors.…”