In many applications of airborne visual techniques for unmanned aerial vehicles (UAVs), lightweight sensors and efficient visual positioning and tracking algorithms are essential in a GNSS-denied environment. Meanwhile, many tasks require the ability of recognition, localization, avoiding, or flying pass through these dynamic obstacles. In this paper, for a small UAV equipped with a lightweight monocular sensor, a single-frame parallel-features positioning method (SPPM) is proposed and verified for a real-time dynamic target tracking and ingressing problem. The solution is featured with systematic modeling of the geometric characteristics of moving targets, and the introduction of numeric iteration algorithms to estimate the geometric center of moving targets. The geometric constraint relationships of the target feature points are modeled as non-linear equations for scale estimation. Experiments show that the root mean square error percentage of static target tracking is less than 1.03% and the root mean square error of dynamic target tracking is less than 7.92 cm. Comprehensive indoor flight experiments are conducted to show the real-time convergence of the algorithm, the effectiveness of the solution in locating and tracking a moving target, and the excellent robustness to measurement noises.