Information is the currency of the digital age -it is constantly communicated, exchanged and bartered, most commonly to support human understanding and decision-making. While the Internet and Web 2.0 have been pivotal in streamlining many of the information creation and dissemination processes, they have significantly complicated matters for users as well. Most notably, the substantial increase in the amount of content available online has introduced an information overload problem, while also exposing content with largely unknown levels of quality, leaving many users with the difficult question of, what information to trust? In this article we approach this problem from two perspectives, both aimed at supporting human decision-making using online information. First, we focus on the task of measuring the extent to which individuals should trust a piece of openly-sourced information (e.g., from Twitter, Facebook or a blog); this considers a range of factors and metrics in information provenance, quality and infrastructure integrity, and the person's own preferences and opinion. Having calculated a measure of trustworthiness for an information item, we then consider how this rating and the related content could be communicated to users in a cognitively-enhanced manner, so as to build confidence in the information only where and when appropriate. This work concentrates on a range of potential visualisation techniques for trust, with special focus on radar graphs, and draws inspiration from the fields of Human-Computer Interaction (HCI), System Usability and Risk Communication. The novelty of our contribution stems from the comprehensive approach taken to address this very topical problem, ensuring that the trustworthiness of openly-sourced information is adequately measured and effectively communicated to users, thus enabling them to make informed decisions.