Facing the challenges of the European Water Framework Directive and competing demands requires a sound knowledge of the hydrological system. This is a major challenge in regions like Northeast Germany. The landscape has been massively reshaped during repeated advances and retreats of glaciation during the Pleistocene. This resulted in a complex setting of unconsolidated sediments with high textural heterogeneity and with layered aquifer systems, partly confined, but usually of unknown number and extent of single aquifers. The Institute of Landscape Hydrology aims both at a better understanding of hydrological processes and at providing a basis for sustainable water resources management in this region. That would require sound information about the respective regions of interest that are rarely available at sufficient degree of detail. Thus, there is urgent need for alternative approaches. For example, time series of groundwater head, lake water level and stream runoff do not only depend on (unknown) geological structures, but in turn can reveal information about major geological features. To that end, different approaches have been developed and successfully applied at different scales, based both on advanced time series analysis and dimension reduction approaches and on well-known and rather simple methods. This approach has been coined ''forensic hydrology'': Like in a crime story, numerous pieces of evidence are combined in a systematic way to end up with a consistent conceptual model about the prevailing cause-effect relationships. An example is given for the Quillow catchment in Northeast Germany in a rather complex geological setting.