Variability of CO 2 concentrations within the Earth system occurs over a wide range of time and spatial scales. Resolving this variability and its drivers in terrestrial and aquatic environments ultimately requires high-resolution spatial and temporal monitoring; however, relatively high-cost gas analyzers and data loggers can present barriers in terms of cost and functionality. To overcome these barriers, we developed a low-cost Arduino monitoring platform (CO2-LAMP) for recording CO 2 variability in electronically harsh conditions: humid air, soil, and aquatic environments. A relatively inexpensive CO 2 gas analyzer was waterproofed using a semi-permeable, expanded polytetrafluoroethylene membrane. Using first principles, we derived a formulation of the theoretical operation and measurement of PCO 2(aq) by infrared gas analyzers submerged in aquatic environments. This analysis revealed that an IRGA should be able to measure PCO 2(aq) independent of corrections for hydrostatic pressure. CO2-LAMP theoretical operation and measurement were also verified by accompanying laboratory assessment measuring PCO 2(aq) at multiple water depths. The monitoring platform was also deployed at two sites within the Springfield Plateau province in northwest Arkansas, USA: Blowing Springs Cave and the Savoy Experimental Watershed. At Blowing Springs Cave, the CO2-LAMP operated alongside a relatively greater-cost CO 2 monitoring platform. Over the monitoring period, measured values between the two systems covaried linearly (r 2 = 0.97 and 0.99 for cave air and cave stream dissolved CO 2 , respectively). At the Savoy Experimental Watershed, measured soil CO 2 variability capturing sub-daily variation was consistent with previously documented studies in humid, temperate soils. Daily median values varied linearly with soil moisture content (r 2 = 0.84). Overall, the CO2-LAMP captured sub-daily variability of CO 2 in humid air, soil, and aquatic environments that, while out of the scope of the study, highlight both cyclical and complex CO 2 behavior. At present, long-term assessment of platform design is ongoing. Considering cost-savings, CO2-LAMP presents a working base design for continuous, accurate, low-power, and low-cost CO 2 monitoring for remote locations.