Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
An earthquake early-warning system (EEWS) is an indispensable tool for mitigating loss of life caused by earthquakes. The ability to rapidly assess the severity of an earthquake is crucial for effectively managing earthquake disasters and implementing successful risk-reduction strategies. In this regard, the utilization of an Internet of Things (IoT) network enables the real-time transmission of on-site intensity measurements. This paper introduces a novel approach based on machine-learning (ML) techniques to accurately and promptly determine earthquake intensity by analyzing the seismic activity 2 s after the onset of the p-wave. The proposed model, referred to as 2S1C1S, leverages data from a single station and a single component to evaluate earthquake intensity. The dataset employed in this study, named “INSTANCE,” comprises data from the Italian National Seismic Network (INSN) via hundreds of stations. The model has been trained on a substantial dataset of 50,000 instances, which corresponds to 150,000 seismic windows of 2 s each, encompassing 3C. By effectively capturing key features from the waveform traces, the proposed model provides a reliable estimation of earthquake intensity, achieving an impressive accuracy rate of 99.05% in forecasting based on any single component from the 3C. The 2S1C1S model can be seamlessly integrated into a centralized IoT system, enabling the swift transmission of alerts to the relevant authorities for prompt response and action. Additionally, a comprehensive comparison is conducted between the results obtained from the 2S1C1S method and those derived from the conventional manual solution method, which is considered the benchmark. The experimental results demonstrate that the proposed 2S1C1S model, employing extreme gradient boosting (XGB), surpasses several ML benchmarks in accurately determining earthquake intensity, thus highlighting the effectiveness of this methodology for earthquake early-warning systems (EEWSs).
An earthquake early-warning system (EEWS) is an indispensable tool for mitigating loss of life caused by earthquakes. The ability to rapidly assess the severity of an earthquake is crucial for effectively managing earthquake disasters and implementing successful risk-reduction strategies. In this regard, the utilization of an Internet of Things (IoT) network enables the real-time transmission of on-site intensity measurements. This paper introduces a novel approach based on machine-learning (ML) techniques to accurately and promptly determine earthquake intensity by analyzing the seismic activity 2 s after the onset of the p-wave. The proposed model, referred to as 2S1C1S, leverages data from a single station and a single component to evaluate earthquake intensity. The dataset employed in this study, named “INSTANCE,” comprises data from the Italian National Seismic Network (INSN) via hundreds of stations. The model has been trained on a substantial dataset of 50,000 instances, which corresponds to 150,000 seismic windows of 2 s each, encompassing 3C. By effectively capturing key features from the waveform traces, the proposed model provides a reliable estimation of earthquake intensity, achieving an impressive accuracy rate of 99.05% in forecasting based on any single component from the 3C. The 2S1C1S model can be seamlessly integrated into a centralized IoT system, enabling the swift transmission of alerts to the relevant authorities for prompt response and action. Additionally, a comprehensive comparison is conducted between the results obtained from the 2S1C1S method and those derived from the conventional manual solution method, which is considered the benchmark. The experimental results demonstrate that the proposed 2S1C1S model, employing extreme gradient boosting (XGB), surpasses several ML benchmarks in accurately determining earthquake intensity, thus highlighting the effectiveness of this methodology for earthquake early-warning systems (EEWSs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.