Using machine learning models to predict synchronous genitourinary cancers among gastrointestinal stromal tumor patients
Mohammad Alghafees,
Raouf M Seyam,
Turki Al-Hussain
et al.
Abstract:Objectives:
Gastrointestinal stromal tumors (GISTs) can occur synchronously with other neoplasms, including the genitourinary (GU) system. Machine learning (ML) may be a valuable tool in predicting synchronous GU tumors in GIST patients, and thus improving prognosis. This study aims to evaluate the use of ML algorithms to predict synchronous GU tumors among GIST patients in a specialist research center in Saudi Arabia.
Materials and Methods:
We analyzed… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.