2023
DOI: 10.1016/j.scitotenv.2022.160303
|View full text |Cite
|
Sign up to set email alerts
|

Using Machine Learning to make nanomaterials sustainable

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
12
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 28 publications
(14 citation statements)
references
References 260 publications
0
12
0
2
Order By: Relevance
“…Even in our simulation studies with identical cohorts, identical model parameters, and identical covariates, we observed that there was significant variation in which covariates were weighted highly in the final model output. This highlights the need to carefully evaluate the results of the model and not rely on a single seed to set the training and test sets for machine-learning modeling to avoid potential pitfalls that stem from training-test bias [ 50 , 56 61 ]. While the only covariate represented in this discussion session is Angina, these findings were similar within the other accuracy metrics provided in Table 3 .…”
Section: Discussionmentioning
confidence: 99%
“…Even in our simulation studies with identical cohorts, identical model parameters, and identical covariates, we observed that there was significant variation in which covariates were weighted highly in the final model output. This highlights the need to carefully evaluate the results of the model and not rely on a single seed to set the training and test sets for machine-learning modeling to avoid potential pitfalls that stem from training-test bias [ 50 , 56 61 ]. While the only covariate represented in this discussion session is Angina, these findings were similar within the other accuracy metrics provided in Table 3 .…”
Section: Discussionmentioning
confidence: 99%
“…De fato, algoritmos são capazes de tratar uma grande quantidade de dados, possibilitando obter correlações entre a estrutura e composição dos nanomateriais e a predição de seus efeitos toxicológicos (relação estrutura-toxicidade) com base em bioindicadores e biomarcadores de exposição [47][48][49]. Neste ponto, o emprego de tecnologias ômicas de alto desempenho serão importantes para elucidar alvos bioquímicos-moleculares e alterações de vias metabólicas diretamente envolvidas na resposta aos nanomateriais [49].…”
Section: Informática Aplicada Em Nanossegurançaunclassified
“…A nomenclatura e ontologia para nanomateriais é um aspecto crítico; para suprir essa lacuna, um projeto vinculado ao Versailles Project on Advanced Materials and Standards (VAMAS) está em andamento [51]. Este projeto tem por objetivo estabelecer uma identificação única para cada tipo de nanomaterial seguindo recomendações da International Union of Pure and Applied Chemistry (IUPAC), facilitando assim, a anotação em bancos de dados estruturados e o desenvolvimento de modelos computacionais mais robustos que permitirão uma abordagem de sistemas de informação e ciência intensiva de dados capaz de identificar e predizer efeitos toxicológicos de nanomateriais e derivados, bem como seus potenciais riscos e impactos ambientais [47,48].…”
Section: Informática Aplicada Em Nanossegurançaunclassified
“…[18][19][20] The implementation of ML methods in the environmental risk assessment of NMs in the realm of sustainability is also gaining considerable traction. [21] ML is a powerful tool for finding common patterns and trends in a given dataset, classifying the data, and predicting results based on the available data. Instead of using a human-developed algorithm to solve a problem, the machine uses statistical methods to find its own algorithm based on solutions to similar problems.…”
Section: Introductionmentioning
confidence: 99%