As cutting-edge technologies, such as machine learning (ML), are increasingly involved in science assessments, it is essential to conceptualize how assessment practices are innovated by technologies. To partially meet this need, this article focuses on ML-based science assessments and elaborates on how ML innovates assessment practices in science education. The article starts with an articulation of the "practice" nature of assessment both of learning and for learning, identifying four essential assessment practices: identifying learning goals, eliciting performance, interpreting observations, and decision-making and action-taking. I then extend a three-dimensional framework for innovative assessments, including construct, functionality, and automaticity, and based on which to conceptualize innovative assessments in three levels: substitute, transform, and redefine. Using the framework, I elaborate on how the 10 articles included in this special issue, Applying Machine Learning in Science Assessment: Opportunity and Challenge, advanced our knowledge of the innovations that ML brought to science assessment practices. I contend that the 10 articles exemplify a great deal of effort to transform the four components of assessment practices: ML allows assessments to target complex, diverse, and structural constructs, and thus better approaching the threedimensional science learning goals of the Next Generation Science Standards (NGSS Lead States, 2013); ML extends the approaches used to eliciting performance and collecting evidence; ML provides a means to better interpreting observations and using evidence; ML supports immediate and complex decision-making and action-taking. I conclude this article by pushing the field to consider the underlying educational theories that are needed for innovative assessment practices and the necessities of establishing a "romance" between assessment practices and the relevant educational theories, which I contend are the prominent challenges to forward innovative and ML-based assessment practices in science education.