Using Meta-Learning to Reduce the Effort of Training New Workpiece Geometries for Entanglement Detection in Bin-Picking Applications
Marius Moosmann,
Julian Bleifuß,
Johannes Rosport
et al.
Abstract:In this paper, we introduce a scaling method for the training of neural networks used for entanglement detection in Bin-Picking. In the Bin-Picking process of complex-shaped and chaotically stored objects, entangled workpieces are a common source of problems. It has been shown that deep neural networks, which are trained using supervised learning, can be used to detect entangled workpieces. However, this strategy requires time-consuming data generation and an additional training process when adapting to previo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.