Antibacterial surfaces are surfaces that can resist bacteria, relying on the nature of the material itself. It is significant for safe food and water, human health, and industrial equipment. Biofilm is the main form of bacterial contamination on the material surface. Preventing the formation of biofilm is an efficient way to develop antibacterial surfaces. The strategy for constructing the antibacterial surface is divided into bacteria repelling and bacteria killing based on the formation of the biofilm. Material surface wettability, adhesion, and steric hindrance determine bacteria repelling performance. Bacteria should be killed by surface chemistry or physical structures when they are attached to a material surface irreversibly. Killing approaches are usually in the light of the cell membrane of bacteria. This review summarizes the fabrication methods and applications of antibacterial surfaces from the view of the treatment of the material surfaces. We also present several crucial points for developing long-term stability, no drug resistance, broad-spectrum, and even programable antibacterial surfaces.