2016 International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC) 2016
DOI: 10.1109/besc.2016.7804481
|View full text |Cite
|
Sign up to set email alerts
|

Using mobile phone data to explore spatial-temporal evolution of home-based daily mobility patterns in Shanghai

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
3
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 15 publications
0
3
0
1
Order By: Relevance
“…Depending on the nature of the data (call detail records, GPS, travel surveys) and the definition of the motif (location-or activity-based), motif-related research shows between 10 and 17 motifs that can capture 90% of the population activity-travels. These motifs also show spatio-temporal regularity and stability over several months [16][17][18][19][20]. This tends to confirm that typical locational and activity patterns exist and can be leveraged to capture a greater diversity of activity-travel behaviors.…”
Section: A Heterogeneous Demand In Time and Space With Differentiated...mentioning
confidence: 52%
“…Depending on the nature of the data (call detail records, GPS, travel surveys) and the definition of the motif (location-or activity-based), motif-related research shows between 10 and 17 motifs that can capture 90% of the population activity-travels. These motifs also show spatio-temporal regularity and stability over several months [16][17][18][19][20]. This tends to confirm that typical locational and activity patterns exist and can be leveraged to capture a greater diversity of activity-travel behaviors.…”
Section: A Heterogeneous Demand In Time and Space With Differentiated...mentioning
confidence: 52%
“…The method followed in this paper is based on easy-to-implement logical rules. It is inspired by other methods used in detecting home and work locations from mobile phone data Calabrese et al (2011); Liu et al (2016);C ¸olak et al (2015). For our study, we assumed that each passenger would only have one device.…”
Section: Imputation Of Incomplete Wi-fi Tracesmentioning
confidence: 99%
“…y de otros datos complementarios, se han formado grandes bases de datos de flujos de movilidad que contienen información espacial (Spatial Big Data) (Osorio-Arjona & García-Palomares, 2017;Vannoni et al, 2020). El uso de datos así obtenidos se ha multiplicado en investigaciones con diferentes objetivos (Bisanzio et al, 2020;Liu et al, 2016;Moya-Gómez et al, 2021) y para estudiar la relación de la movilidad con las variaciones de la incidencia y propagación de la COVID-19, así como los efectos de las restricciones para el control de la pandemia en la intensidad y modos de la movilidad (Pászto et al, 2021;Sadowski et al, 2021;Wang & Yamamoto, 2020;Xiong et al, 2020).…”
Section: Introductionunclassified