Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used population-level index of developmental instability, developmental noise, and robustness. It reflects a population's state of adaptation and genomic coadaptation. Here, we review the literature on fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal, dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait has its advantages and disadvantages, but results are most robust when multiple traits are combined into a composite index of fluctuating asymmetry (CFA). Both environmental (diet, climate, toxins) and genetic (aneuploidy, heterozygosity, inbreeding) stressors have been linked to population-level variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry. Nevertheless, there have been many conflicting results, in part because (1) fluctuating asymmetry is a weak signal in a sea of noise; and (2) studies of human fluctuating asymmetry have not always followed best practices. The most serious concerns are insensitive asymmetry indices (correlation coefficient and coefficient of indetermination), inappropriate size scaling, unrecognized mixture distributions, inappropriate corrections for directional asymmetry, failure to use composite indices, and inattention to measurement error. Consequently, it is often difficult (or impossible) to compare results across traits, and across studies.