2023
DOI: 10.1111/bjet.13336
|View full text |Cite
|
Sign up to set email alerts
|

Using natural language processing to support peer‐feedback in the age of artificial intelligence: A cross‐disciplinary framework and a research agenda

Abstract: Advancements in artificial intelligence are rapidly increasing. The new‐generation large language models, such as ChatGPT and GPT‐4, bear the potential to transform educational approaches, such as peer‐feedback. To investigate peer‐feedback at the intersection of natural language processing (NLP) and educational research, this paper suggests a cross‐disciplinary framework that aims to facilitate the development of NLP‐based adaptive measures for supporting peer‐feedback processes in digital learning environmen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
10
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
3
1

Relationship

0
10

Authors

Journals

citations
Cited by 45 publications
(11 citation statements)
references
References 134 publications
0
10
0
1
Order By: Relevance
“…Potential pedagogical implications relate to issues such as scaffolding and enhanced feedback on mechanics, coherence, and argument structure (Leoste et al, 2021;Kamalov et al, 2023;Nazari et al, 2021), students access personalized learning and accessibility (Bozkurt et al, 2021;Lim et al, 2023;Tedre et al, 2021), and heightened engagement and motivation (Celik et al, 2022;Kim et al, 2022;Liang et al, 2023). In addition, AI could impact pedagogy in terms of developing critical thinking and research skills (Bauer et al, 2023;Bozkurt et al, 2021;Kim et al, 2022;), and promoting collaborative authoring and peer review that could help encourage communication and cooperative learning (Leoste et al, 2021;Xiao & Yi, 2021).…”
Section: Pedagogical Implications Of Integrating Ai Tools Into Academ...mentioning
confidence: 99%
“…Potential pedagogical implications relate to issues such as scaffolding and enhanced feedback on mechanics, coherence, and argument structure (Leoste et al, 2021;Kamalov et al, 2023;Nazari et al, 2021), students access personalized learning and accessibility (Bozkurt et al, 2021;Lim et al, 2023;Tedre et al, 2021), and heightened engagement and motivation (Celik et al, 2022;Kim et al, 2022;Liang et al, 2023). In addition, AI could impact pedagogy in terms of developing critical thinking and research skills (Bauer et al, 2023;Bozkurt et al, 2021;Kim et al, 2022;), and promoting collaborative authoring and peer review that could help encourage communication and cooperative learning (Leoste et al, 2021;Xiao & Yi, 2021).…”
Section: Pedagogical Implications Of Integrating Ai Tools Into Academ...mentioning
confidence: 99%
“…Natural and intuitive interactions are made possible by these companions' ability to comprehend and analyze sophisticated human language owing to the application of NLP. This feature guarantees that students can ask questions and share their ideas in the same way as they would with a live teacher, with the added benefit of receiving immediate, personalized feedback [59]. These dynamic exchanges maintain the learning process' effectiveness and stimulation.…”
Section: Interactive Training Companionmentioning
confidence: 99%
“…Si a estrategias como el chatbot le añadimos el uso de la IA en los procesos de feedback por pares y autorregulación, algunos autores (Bauer et al, 2023) describen casos de éxito en que la IA, el uso del Lenguaje Natural y las Analíticas de Aprendizaje pueden actuar como un primer apoyo para la sistematización en la elaboración del feedback. Ello es especialmente útil para estudiantes que no tienen suficiente conocimiento sobre cómo evaluar un ensayo a partir de criterios de evaluación ya establecidos (Darvishi et al, 2022).…”
Section: Marco Teóricounclassified