2023
DOI: 10.1101/2023.03.17.23287414
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Using natural language processing to study homelessness longitudinally with electronic health record data subject to irregular observations

Abstract: The Electronic Health Record (EHR) contains information about social determinants of health (SDoH) such as homelessness. Much of this information is contained in clinical notes and can be extracted using natural language processing (NLP). This data can provide valuable information for researchers and policymakers studying long-term housing outcomes for individuals with a history of homelessness. However, studying homelessness longitudinally in the EHR is challenging due to irregular observation times. In this … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?