2016
DOI: 10.1007/978-3-319-30084-9_42
|View full text |Cite
|
Sign up to set email alerts
|

Using NNMs to Evaluate Reduced Order Models of Curved Beam

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2017
2017
2021
2021

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 10 publications
0
2
0
Order By: Relevance
“…The value of the scaling factor determines the amount of nonlinearity that is excited in the system and thus the coefficients to be estimated. Previous works [17,18] sought to find a set of optimal loads for which to excite the structure such that the ROM is accurate. This approach, although shown to be effective in certain cases, does not evaluate the ability of the ROM to generalize to other load cases and may be case dependent.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The value of the scaling factor determines the amount of nonlinearity that is excited in the system and thus the coefficients to be estimated. Previous works [17,18] sought to find a set of optimal loads for which to excite the structure such that the ROM is accurate. This approach, although shown to be effective in certain cases, does not evaluate the ability of the ROM to generalize to other load cases and may be case dependent.…”
Section: Introductionmentioning
confidence: 99%
“…This procedure evaluates the core function of the nonlinear ROM, its ability to accurately predict the nonlinear internal force for a given displacement state. Most works in the field have used subsequent evaluation metrics, such as static displacement [5,11], random response [5,11], and nonlinear normal modes [17,18]. These more complex and computationally expensive metrics indirectly evaluate the ability of the ROM to predict the nonlinear internal force.…”
Section: Introductionmentioning
confidence: 99%