Remote sensing is an important tool for the quantitative estimation of forest carbon stock. This study presents a multiscale, object-based method for the estimation of aboveground carbon stock in Moso bamboo forests. The method differs from conventional pixel-based approaches and is more suitable for Chinese forest management inventory. This research indicates that the construction of a SPOT-6 multiscale hierarchy with the 30 scale as the optimal segmentation scale achieves accurate information extraction for Moso bamboo forests. The producer’s and user’s accuracy are 88.89% and 86.96%, respectively. A random generalized linear model (RGLM), constructed using the multiscale hierarchy, can accurately estimate carbon storage of the bamboo forest in the study area, with a fitting and test accuracy (R2) of 0.74 and 0.64, respectively. In contrast, pixel-based methods using the RGLM model have a fitting and prediction accuracy of 0.24 and 0.01, respectively; thus, the object-based RGLM is a major improvement. The multiscale object hierarchy correctly analyzed the multiscale correlation and responses of bamboo forest elements to carbon storage. Objects at the 30 scale responded to the microstructure of the bamboo forest and had the strongest correlation between estimated carbon storage and measured values. Objects at the 60 scale did not directly inherit the forest information, so the response to the measured carbon storage of the bamboo forest was the smallest. Objects at the 90 scale serve as super-objects containing the forest feature information and have a significant correlation with the measured carbon storage. Therefore, in this study, a carbon storage estimation model was constructed based on the multiscale characteristics of the bamboo forest so as to analyze correlations and greatly improve the fitting and prediction accuracy of carbon storage.