2017
DOI: 10.3758/s13428-017-0937-z
|View full text |Cite
|
Sign up to set email alerts
|

Using recursive partitioning to account for parameter heterogeneity in multinomial processing tree models

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
10
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
3

Relationship

2
7

Authors

Journals

citations
Cited by 16 publications
(10 citation statements)
references
References 40 publications
(57 reference statements)
0
10
0
Order By: Relevance
“…The papers of Strobl et al (2015) and Komboz et al (2018) also describe an application of model-based trees to detect subpopulations that show measurement invariance. Related approaches were presented for a variety of other models that are commonly used in psychology and related fields, like multinomial processing tree models (Wickelmaier & Zeileis, 2018), several extensions of generalized linear models (Fokkema, Smits, Zeileis, Hothorn, & Kelderman, 2018;Seibold, Hothorn, & Zeileis, 2019) and network models (Jones, Mair, Simon, & Zeileis, 2019).…”
Section: An Overviewmentioning
confidence: 99%
“…The papers of Strobl et al (2015) and Komboz et al (2018) also describe an application of model-based trees to detect subpopulations that show measurement invariance. Related approaches were presented for a variety of other models that are commonly used in psychology and related fields, like multinomial processing tree models (Wickelmaier & Zeileis, 2018), several extensions of generalized linear models (Fokkema, Smits, Zeileis, Hothorn, & Kelderman, 2018;Seibold, Hothorn, & Zeileis, 2019) and network models (Jones, Mair, Simon, & Zeileis, 2019).…”
Section: An Overviewmentioning
confidence: 99%
“…Unlike semtree, partykit is not limited to a specific model class such as SEMs but provides the infrastructure for general recursive partitioning across various model classes. Among other features, partykit provides the generic MOB algorithm for model-based recursive partitioning that has been used to study heterogeneity in M-estimators (Zeileis et al, 2008), Bradley-Terry models (Strobl et al, 2011), Rasch models (Strobl et al, 2015;Komboz et al, 2018), multinomial processing trees (Wickelmaier and Zeileis, 2018), generalized linear mixed-effects models (Fokkema et al, 2018), network models (Jones et al, 2020), and circular regression models (Lang et al, 2020). Moreover, MOB is also used in more specialized recursive partitioning packages such as psychotree (Zeileis et al, 2020).…”
Section: Introductionmentioning
confidence: 99%
“…Other model-based recursive partitioning methods suggested for general M-estimators (Zeileis et al, 2008), Bradley-Terry models (Strobl, Wickelmaier, & Zeileis, 2011), Rasch models (Strobl, Kopf, & Zeileis, 2015), multinomial processing trees (Wickelmaier & Zeileis, 2018), network models (Jones, Mair, Simon, & Zeileis, 2019), or for circular data (Lang et al, 2020) (Merkle, Fan, & Zeileis, 2014;Merkle & Zeileis, 2013;Wang, Merkle, & Zeileis, 2014;Wang, Strobl, Zeileis, & Merkle, 2018). Score-based tests are computationally lightweight as they do not require the estimation of group-specific SEMs for each split.…”
Section: Introductionmentioning
confidence: 99%