Using reinforcement learning to improve drone-based inference of greenhouse gas fluxes
Alouette Van Hove,
Kristoffer Aalstad,
Norbert Pirk
Abstract:Accurate mapping of greenhouse gas fluxes at the Earth’s surface is essential for the validation and calibration of climate models. In this study, we present a framework for surface flux estimation with drones. Our approach uses data assimilation (DA) to infer fluxes from drone-based observations, and reinforcement learning (RL) to optimize the drone’s sampling strategy. Herein, we demonstrate that an RL-trained drone can quantify a CO2 hotspot more accurately than a drone sampling along a predefined flight pa… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.