Abstract. Detecting thermal anomalies prior to strong earthquakes is a key in understanding and forecasting earthquake activities because of its recognition of thermal radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time 10 manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper dedicatedly reviews the progress and development of preseismic thermal anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are discussed. Second, different anomaly detection methods, which are used to extract thermal anomalous signals that probably indicate future seismic events, are presented. Finally, certain 15 critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring and improve short-and medium-term forecasting, which should play a large and growing role in pre-seismic thermal anomaly research.