Stable isotope studies on stable isotope ratios of hydrogen and oxygen in water within plants provide new information on water sources and water use patterns under natural conditions. In this study, the sources of water uptake for two typical xerophytic shrubs, Caragana korshinskii and Artemisia ordosica, were determined at four different-aged revegetated sites (1956, 1964, 1981, and 1987) in the Tengger Desert, a revegetated desert area in China. Samples from precipitation, soil water at different soil layers, and xylem water from each species were collected in 2013. The proportion of plant water sources derived from different potential sources was determined using oxygen (δ 18 O) and hydrogen (δD) stable isotope analysis combined with a multiple-source linear mixing model. Results showed that the local meteoric water line (LMWL) at Shapotou was as follows: δD = 7.39δ
18O values varied with depth, and the variation decreased as the age of the revegetated site increased. In general, C. korshinskii and A. ordosica mainly tapped water from the upper soil layer (10-100 cm) during the wet seasons. With increasing sand stabilization age, the proportion of water sources from shallow soil water decreased, whereas deep soil moisture utilization increased. During the dry season, C. korshinskii and A. ordosica showed evident hierarchical utilization of soil water in different soil layers. Small rainfall events did not significantly affect the water source of C. korshinskii and A. ordosica.
OPEN ACCESSWater 2015, 7
1031However, large rainfall events not only complemented the deep soil moisture, but also recharged the shallow soil water after a few days, and the proportion of soil water source from deep soil layer increased from 2% ± 0.7% to 10% ± 1.4% for both plants.