2018
DOI: 10.3318/ijes.2018.36.45
|View full text |Cite
|
Sign up to set email alerts
|

Using Tellus stream sediment geochemistry to fingerprint regional geology and mineralisation systems in Southeast Ireland

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 18 publications
0
2
0
Order By: Relevance
“…Quality control was ensured by inserting silica blanks, duplicate samples and OREAS 147 and 751-certified reference materials into the sample stream, with no accuracy issues noted outside +/− 1 standard deviation of the certified mean value. In a subsequent geochemical interpretation, following a previously published approach in the central Vosges [3] and southeast Ireland [30], the additional ICP-MS assays supported the usage of multi-element major and trace geochemistry in classifying lithological populations and petrogenetic and mineralisation processes. The classification of lithological units was achieved by delineating population clusters in bivariate geochemical plots.…”
Section: Methodsmentioning
confidence: 72%
See 1 more Smart Citation
“…Quality control was ensured by inserting silica blanks, duplicate samples and OREAS 147 and 751-certified reference materials into the sample stream, with no accuracy issues noted outside +/− 1 standard deviation of the certified mean value. In a subsequent geochemical interpretation, following a previously published approach in the central Vosges [3] and southeast Ireland [30], the additional ICP-MS assays supported the usage of multi-element major and trace geochemistry in classifying lithological populations and petrogenetic and mineralisation processes. The classification of lithological units was achieved by delineating population clusters in bivariate geochemical plots.…”
Section: Methodsmentioning
confidence: 72%
“…Numerical changes in these ratios during late-stage magmatic fractionation are a result of the substitution of K with Rb in micas and feldspars [44], fractionation of Nb over Ta due to secondary muscovitisation and hydrothermal sub-solidus reactions enriching Ta in F-rich residual melts [29], and increasing Kd values of Hf in zircon, which are only weakly influenced by secondary fluid-related processes [28,45,46]. Recent geochemical studies of the Leinster Granite (Ireland) and Central Vosges Mg-K granites [3,30], along with mineralogical results of this study, have shown that these petrogenetic ratios are equally applicable to determine highly fractionated lithologies using geological materials affected by secondary dispersion processes, such as stream sediments. The lack of significant weathering of K, Rb, Sn, Nb and Zr-bearing silicate mineral phases in the analysed stream sediment fraction that were collected as well as the representativity of these stream sediments in relation to mapped and sampled outcrops of the catchment area confirm that these petrogenetic ratios can be employed to fingerprint fractionation patterns in the study area.…”
Section: Discussionmentioning
confidence: 99%