Background
Computerized clinical decision support systems (CDSSs) enhance patient care through real-time, evidence-based guidance for health care professionals. Despite this, the effective implementation of these systems for health services presents multifaceted challenges, leading to inappropriate use and abandonment over the course of time. Using the Non-Adoption, Abandonment, Scale-Up, Spread, and Sustainability (NASSS) framework, this qualitative study examined CDSS adoption in a metropolitan health service, identifying determinants across implementation stages to optimize CDSS integration into health care practice.
Objective
This study aims to identify the theory-informed (NASSS) determinants, which included multiple CDSS interventions across a 2-year period, both at the health-service level and at the individual hospital setting, that either facilitate or hinder the application of CDSSs within a metropolitan health service. In addition, this study aimed to map these determinants onto specific stages of the implementation process, thereby developing a system-level understanding of CDSS application across implementation stages.
Methods
Participants involved in various stages of the implementation process were recruited (N=30). Participants took part in interviews and focus groups. We used a hybrid inductive-deductive qualitative content analysis and a framework mapping approach to categorize findings into barriers, enablers, or neutral determinants aligned to NASSS framework domains. These determinants were also mapped to implementation stages using the Active Implementation Framework stages approach.
Results
Participants comprised clinical adopters (14/30, 47%), organizational champions (5/30, 16%), and those with roles in organizational clinical informatics (5/30, 16%). Most determinants were mapped to the organization level, technology, and adopter subdomains. However, the study findings also demonstrated a relative lack of long-term implementation planning. Consequently, determinants were not uniformly distributed across the stages of implementation, with 61.1% (77/126) identified in the exploration stage, 30.9% (39/126) in the full implementation stage, and 4.7% (6/126) in the installation stages. Stakeholders engaged in more preimplementation and full-scale implementation activities, with fewer cycles of monitoring and iteration activities identified.
Conclusions
These findings addressed a substantial knowledge gap in the literature using systems thinking principles to identify the interdependent dynamics of CDSS implementation. A lack of sustained implementation strategies (ie, training and longer-term, adopter-level championing) weakened the sociotechnical network between developers and adopters, leading to communication barriers. More rigorous implementation planning, encompassing all 4 implementation stages, may, in a way, help in addressing the barriers identified and enhancing enablers.