Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lost circulation (LC) is commonly encountered in drilling and cementing operations and can be a costly problem that increases nonproductive time (NPT). Various methods can be applied to control losses—from applying best operational practices to incorporating LC control materials in treatment fluids and cement slurries. Among the cementing challenges, the loss of circulation can also be associated with poor zonal isolation and becomes more critical when zones between reservoirs should be covered to avoid sustained casing pressure (SCP) in the future and to extend the life of the well. The application for this tailored spacer was the first one globally. Challenges addressed in the largest offshore field loss zone in the UAE included a high likelihood for losses during initial cementing, narrow equivalent circulating density (ECD) gradient, uncertainty in bringing cement to surface in the casing operation, and zonal isolation between reservoirs, formation, and caprock. As part of the best cementing practices, the design and tailoring of the spacers should be considered. Correct use allows the cement to cover zones of interest with less contamination, and cement properties can develop and interact efficiently with the formation. Using a tailored spacer fluid system engineered to effectively and efficiently help prevent LC and maintain wellbore stability while preparing the wellbore to receive cement is discussed. The tailored spacer system uses additive synergies to help prevent LC in porous and fractured formations and enables control of rheological hierarchy and wellbore fluid displacement efficiency. The spacer was designed to optimize cementing operations where losses are observed and, in this case, incorporate additional LC materials to help prevent severe losses and achieve the desired top of cement (TOC). The tailored spacer system was pumped ahead of the cement slurry, to reduce permeability across the formation, with superior properties that help prevent fluid loss of the cement to the permeable formations. Enhancing the cement bond and allowing an effective mud removal differentiate it from a conventional spacer. Using this spacer system enabled cementing goals to be achieved. Cement was brought to the surface, casedhole logs exhibited excellent cement bonding, and no SCP was registered, helping eliminate the need for unwanted remedial operations to secure the zonal isolation, which saves rig time.
Lost circulation (LC) is commonly encountered in drilling and cementing operations and can be a costly problem that increases nonproductive time (NPT). Various methods can be applied to control losses—from applying best operational practices to incorporating LC control materials in treatment fluids and cement slurries. Among the cementing challenges, the loss of circulation can also be associated with poor zonal isolation and becomes more critical when zones between reservoirs should be covered to avoid sustained casing pressure (SCP) in the future and to extend the life of the well. The application for this tailored spacer was the first one globally. Challenges addressed in the largest offshore field loss zone in the UAE included a high likelihood for losses during initial cementing, narrow equivalent circulating density (ECD) gradient, uncertainty in bringing cement to surface in the casing operation, and zonal isolation between reservoirs, formation, and caprock. As part of the best cementing practices, the design and tailoring of the spacers should be considered. Correct use allows the cement to cover zones of interest with less contamination, and cement properties can develop and interact efficiently with the formation. Using a tailored spacer fluid system engineered to effectively and efficiently help prevent LC and maintain wellbore stability while preparing the wellbore to receive cement is discussed. The tailored spacer system uses additive synergies to help prevent LC in porous and fractured formations and enables control of rheological hierarchy and wellbore fluid displacement efficiency. The spacer was designed to optimize cementing operations where losses are observed and, in this case, incorporate additional LC materials to help prevent severe losses and achieve the desired top of cement (TOC). The tailored spacer system was pumped ahead of the cement slurry, to reduce permeability across the formation, with superior properties that help prevent fluid loss of the cement to the permeable formations. Enhancing the cement bond and allowing an effective mud removal differentiate it from a conventional spacer. Using this spacer system enabled cementing goals to be achieved. Cement was brought to the surface, casedhole logs exhibited excellent cement bonding, and no SCP was registered, helping eliminate the need for unwanted remedial operations to secure the zonal isolation, which saves rig time.
Summary The largest discovery of oil and gas in recent years is situated in the Volga-Ural field in Orenburg Oblast. The field was discovered in 2005. The development target is the Devonian Dkt formation which is an aggregate of ancient strata in the Earth's crust that were formed during the Devonian Period of the Paleozoic Era. The Devonian System is divided into a Lower, Middle and Upper series. It consists of alternating layers of sandstone-claystones and siltstones, which have low permeability. Hydraulic fracturing is required to obtain hydrocarbon inflow from this type of rock. The well design employed in the Volga-Ural field incorporates five casing strings and the main challenge while drilling wells in this field is lost circulation. This ranges from partial fluid loss to no returns and has a significant impact on the cementation of the 178/146 mm production casing. Lost circulation has resulted in a failure to achieve the targeted top of cement, annular pressure, annular crossflows and a poor cement bond with both the casing and formation. Prior to 2015, a stage cementing collar (SCC) technique was used to cement the production casing without losses. However, this cementing technique often resulted in poor zonal isolation resulting in water flows between zones. Additionally, after well completion, poor cement bonding to both the casing string and producing formation created a pathway for annular flow of the formation fluids. These challenges called for an alternate solution. This paper presents how foamed cementing technology was used to solve the challenges in isolation of the sandstones and the subsequent improvement of the cementing bond quality. The foam cementing technique was tested in the Volga-Ural field at the end of 2015 and in early 2016 and became the standard solution for cementing the 178/146 mm production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.