2014
DOI: 10.1098/rspa.2014.0272
|View full text |Cite
|
Sign up to set email alerts
|

Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models

Abstract: Transfer function tools commonly used in engineering control analysis can be used to better understand the dynamics of El Niño Southern Oscillation (ENSO), compare data with models and identify systematic model errors. The transfer function describes the frequency-dependent input–output relationship between any pair of causally related variables, and can be estimated from time series. This can be used first to assess whether the underlying relationship is or is not frequency dependent, and if so, to diagnose t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2014
2014
2020
2020

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 42 publications
0
3
0
1
Order By: Relevance
“…MacMartin & Tziperman [8] apply here transfer function methodology to help understand ENSO dynamics, compare data with models and identify systematic model errors. Transfer functions represent the frequency-dependent input-output relationship between a pair of variables.…”
mentioning
confidence: 99%
“…MacMartin & Tziperman [8] apply here transfer function methodology to help understand ENSO dynamics, compare data with models and identify systematic model errors. Transfer functions represent the frequency-dependent input-output relationship between a pair of variables.…”
mentioning
confidence: 99%
“…Analyzing the response to a different perturbed region (not shown) can help ascertain whether that response is particular to perturbations in a single region or whether this is the result of excitation of a natural mode of variability; in the latter case, information about the timescale of response can aid in identifying which mode of variability is being excited. In addition, one could isolate particular spatial areas that one wishes to analyze (for example, by spatial averaging over the midlatitudes) and compute the transfer function (MacMartin and Tziperman, 2014) to ascertain magnitude, phase, and spectral coherence of the relationship between that feature and the input signal. Through these explorations, one has a much Figure 9.…”
Section: Discussionmentioning
confidence: 99%
“…Como en MacMartin y Tziperman (2014), pudimos comparar cuantitativamente diferentes procesos individuales entre las observaciones. Nótese que las ecuaciones (10) y (11) describen, de manera implícita, las relaciones de un sistema de retroalimentación que contiene los elementos clave presentados en la mayoría de los modelos dinámicos utilizados en la predicción canónica de ENSO (Fernández y (Graham et al, 2015) o el modelo de oscilador retrasado (MacMartin y Tziperman, 2014). Comenzando con un frío (anomalías SOI positivas) o una condición ENSO normal, los vientos alisios ecuatoriales pueden generar una ola Kelvin ascendente hacia el este en el Pacífico occidental.…”
Section: Discusión Y Conclusionesunclassified