2024
DOI: 10.3390/en17102330
|View full text |Cite
|
Sign up to set email alerts
|

Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units

Anping Wan,
Chenyu Du,
Wenbin Gong
et al.

Abstract: To improve the power generation efficiency of offshore wind turbines and address the problem of high fire monitoring and warning costs, we propose a data-driven fire warning method based on transfer learning for wind turbines in this paper. This paper processes wind turbine operation data in a SCADA system. It uses an extreme gradient-boosting tree (XGBoost) algorithm to build an offshore wind turbine unit fire warning model with a multiparameter prediction function. This paper selects some parameters from the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 44 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?