Using Transfer Learning to Realize Low Resource Dungan Language Speech Synthesis
Mengrui Liu,
Rui Jiang,
Hongwu Yang
Abstract:This article presents a transfer-learning-based method to improve the synthesized speech quality of the low-resource Dungan language. This improvement is accomplished by fine-tuning a pre-trained Mandarin acoustic model to a Dungan language acoustic model using a limited Dungan corpus within the Tacotron2+WaveRNN framework. Our method begins with developing a transformer-based Dungan text analyzer capable of generating unit sequences with embedded prosodic information from Dungan sentences. These unit sequence… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.