Unmanned aerial systems (UAS), commonly known as drones, have gained widespread use due to their affordability and versatility across various domains, including military, commercial, and recreational sectors. Applications such as remote sensing, aerial imaging, agriculture, firefighting, search and rescue, infrastructure inspection, and public safety have extensively adopted this technology. However, environmental impacts, particularly noise, have raised concerns among the public and local communities. Unlike traditional crewed aircraft, drones typically operate in low-altitude airspace (below 400 feet or 122 m), making their noise impact more significant when they are closer to houses, people, and livestock. Numerous studies have explored methods for monitoring, assessing, and predicting the noise footprint of drones. This study employs a bibliometric analysis of relevant scholarly works in the Web of Science Core Collection, published from 2015 to 2024, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) data collection and screening procedures. The International Journal of Environmental Research and Public Health, Aerospace Science and Technology, and the Journal of the Acoustical Society of America are the top three preferred outlets for publications in this area. This review unveils trends, topics, key authors and institutions, and national contributions in the field through co-authorship analysis, co-citation analysis, and other statistical methods. By addressing the identified challenges, leveraging emerging technologies, and fostering collaborations, the field can move towards more effective noise abatement strategies, ultimately contributing to the broader acceptance and sustainable integration of UASs into various aspects of society.