Speaker diarization has received several research attentions over the last decade. Among the different domains of speaker diarization, diarization in meeting domain is the most challenging one. It usually contains spontaneous speech and is, for example, susceptible to reverberation.
The appropriate selection of speech features is one of the factors that affect the performance of speaker diarization systems. Mel Frequency Cepstral Coefficients (MFCC) are the most widely used short-term speech features in speaker diarization. Other factors that affect the performance of speaker diarization systems are the techniques employed to perform both speaker segmentation and speaker clustering.
In this thesis, we have proposed the use of jitter and shimmer long-term voice-quality features both for Gaussian Mixture Modeling (GMM) and i-vector based speaker diarization systems. The voice-quality features are used together with the state-of-the-art short-term cepstral and long-term speech ones. The long-term features consist of prosody and Glottal-to-Noise excitation ratio (GNE) descriptors. Firstly, the voice-quality, prosodic and GNE features are stacked in the same feature vector. Then, they are fused with cepstral coefficients at the score likelihood level both for the proposed Gaussian Mixture Modeling (GMM) and i-vector based speaker diarization systems.
For the proposed GMM based speaker diarization system, independent HMM models are estimated from the short-term and long-term speech feature sets. The fusion of the short-term descriptors with the long-term ones in speaker segmentation is carried out by linearly weighting the log-likelihood scores of Viterbi decoding. In the case of speaker clustering, the fusion of the short-term cepstral features with the long-term ones is carried out by linearly fusing the Bayesian Information Criterion (BIC) scores corresponding to these feature sets.
For the proposed i-vector based speaker diarization system, the speaker segmentation is carried out exactly the same as in the previously mentioned GMM based speaker diarization system. However, the speaker clustering technique is based on the recently introduced factor analysis paradigm. Two set of i-vectors are extracted from the speaker segmentation hypothesis. Whilst the first i-vector is extracted from short-term cepstral features, the second one is extracted from the voice quality, prosody and GNE descriptors. Then, the cosine-distance and Probabilistic Linear Discriminant Analysis (PLDA) scores of i-vectors are linearly weighted to obtain a fused similarity score. Finally, the fused score is used as speaker clustering distance.
We have also proposed the use of delta dynamic features for speaker clustering. The motivation for using deltas in clustering is that delta dynamic features capture the transitional characteristics of the speech signal which contain speaker specific information. This information is not captured by the static cepstral coefficients. The delta features are used together with the short-term static cepstral coefficients and long-term speech features (i.e., voice-quality, prosody and GNE) both for GMM and i-vector based speaker diarization systems.
The experiments have been carried out on Augmented Multi-party Interaction (AMI) meeting corpus. The experimental results show that the use of voice-quality, prosody, GNE and delta dynamic features improve the performance of both GMM and i-vector based speaker diarization systems.
La diarización del altavoz ha recibido varias atenciones de investigación durante la última década. Entre los diferentes dominios de la diarización del hablante, la diarización en el dominio del encuentro es la más difícil. Normalmente contiene habla espontánea y, por ejemplo, es susceptible de reverberación. La selección apropiada de las características del habla es uno de los factores que afectan el rendimiento de los sistemas de diarización de los altavoces. Los Coeficientes Cepstral de Frecuencia Mel (MFCC) son las características de habla de corto plazo más utilizadas en la diarización de los altavoces. Otros factores que afectan el rendimiento de los sistemas de diarización del altavoz son las técnicas empleadas para realizar tanto la segmentación del altavoz como el agrupamiento de altavoces. En esta tesis, hemos propuesto el uso de jitter y shimmer características de calidad de voz a largo plazo tanto para GMM y i-vector basada en sistemas de diarización de altavoces. Las características de calidad de voz se utilizan junto con el estado de la técnica a corto plazo cepstral y de larga duración de habla. Las características a largo plazo consisten en la prosodia y los descriptores de relación de excitación Glottal-a-Ruido (GNE). En primer lugar, las características de calidad de voz, prosódica y GNE se apilan en el mismo vector de características. A continuación, se fusionan con coeficientes cepstrales en el nivel de verosimilitud de puntajes tanto para los sistemas de diarización de altavoces basados ¿¿en el modelo Gaussian Mixture Modeling (GMM) como en los sistemas basados ¿¿en i-vector. . Para el sistema de diarización de altavoces basado en GMM propuesto, se calculan modelos HMM independientes a partir de cada conjunto de características. En la segmentación de los altavoces, la fusión de los descriptores a corto plazo con los de largo plazo se lleva a cabo mediante la ponderación lineal de las puntuaciones log-probabilidad de decodificación Viterbi. En la agrupación de altavoces, la fusión de las características cepstrales a corto plazo con las de largo plazo se lleva a cabo mediante la fusión lineal de las puntuaciones Bayesian Information Criterion (BIC) correspondientes a estos conjuntos de características. Para el sistema de diarización de altavoces basado en un vector i, la fusión de características se realiza exactamente igual a la del sistema basado en GMM antes mencionado. Sin embargo, la técnica de agrupación de altavoces se basa en el paradigma de análisis de factores recientemente introducido. Dos conjuntos de i-vectores se extraen de la hipótesis de segmentación de altavoz. Mientras que el primer vector i se extrae de características espectrales a corto plazo, el segundo se extrae de los descriptores de calidad de voz apilados, prosódicos y GNE. A continuación, las puntuaciones de coseno-distancia y Probabilistic Linear Discriminant Analysis (PLDA) entre i-vectores se ponderan linealmente para obtener una puntuación de similitud fundida. Finalmente, la puntuación fusionada se utiliza como distancia de agrupación de altavoces. También hemos propuesto el uso de características dinámicas delta para la agrupación de locutores. La motivación para el uso de deltas en la agrupación es que las características dinámicas delta capturan las características de transición de la señal de voz que contienen información específica del locutor. Esta información no es capturada por los coeficientes cepstrales estáticos. Las características delta se usan junto con los coeficientes cepstrales estáticos a corto plazo y las características de voz a largo plazo (es decir, calidad de voz, prosodia y GNE) tanto para sistemas de diarización de altavoces basados en GMM como en sistemas i-vector. Los resultados experimentales sobre AMI muestran que el uso de calidad vocal, prosódica, GNE y dinámicas delta mejoran el rendimiento de los sistemas de diarización de altavoces basados en GMM e i-vector.