2015
DOI: 10.1016/j.eswa.2014.10.001
|View full text |Cite
|
Sign up to set email alerts
|

Using Volume Weighted Support Vector Machines with walk forward testing and feature selection for the purpose of creating stock trading strategy

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
41
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 100 publications
(42 citation statements)
references
References 20 publications
0
41
0
1
Order By: Relevance
“…Technical analysis creates its decisions based on historical prices, assuming that historical behaviours have an effect on the future evolution of stock market returns. In technical analysis it is common to use indicators (Patel, Shah, Thakkar, & Kotecha, 2015, Liu, 2015Zbikowski, 2015), that are generated by applying more or less compound formulas to historical returns. Subsequently, investors explore market behavior using technical analysis to anticipate future market trends.…”
Section: Previous Studiesmentioning
confidence: 99%
“…Technical analysis creates its decisions based on historical prices, assuming that historical behaviours have an effect on the future evolution of stock market returns. In technical analysis it is common to use indicators (Patel, Shah, Thakkar, & Kotecha, 2015, Liu, 2015Zbikowski, 2015), that are generated by applying more or less compound formulas to historical returns. Subsequently, investors explore market behavior using technical analysis to anticipate future market trends.…”
Section: Previous Studiesmentioning
confidence: 99%
“…The idea of Volume Weighted SVM was introduced in [5] and further investigated in [8]. It is based on the simple, yet powerful, assumption that latest quotations should have a greater impact while building a prediction model.…”
Section: Volume Weighted Support Vector Machinesmentioning
confidence: 99%
“…In [8], the formula 5 was used in combination with several technical indicators. The list of indicators used as an input for VW-SVM for the purpose of the experiment presented in this paper is enlisted in Table 1.…”
Section: Volume Weighted Support Vector Machinesmentioning
confidence: 99%
“…Dėl to mokslininkai vis dažniau bando sukurti automatinius sprendimo priėmimo modelius, įtraukiančius lanksčiuosius skaičiavimo (angl. soft computing) metodus (Geva, Zahavi 2014), tokius kaip dirbtinis neuronų tinklas ir neraiškioji logika, dėl jų sugebėjimo įvertinti netiesinius ir dinamiš-kus laiko eilučių šablonus Zbikowski 2015). Be dirbtinio neuronų tinklo, modeliai įtraukia ir kitus metodus, dažniausia tai yra techninė ar fundamentalioji analizė, slankiųjų vidurkių sistemos ir įvairūs techniniai rodikliai, optimizavimo metodai, regresiniai modeliai, genetiniai algoritmai ir kt., kurie pasirenkami priklausomai nuo norimo rezultato.…”
Section: Prielaidos Investavimo Sprendimų Priėmimo Modeliams Kurtiunclassified