The photovoltaic array can be used as a medium for carrier communication to realize monitoring of photovoltaic components. Photovoltaic array channel noise, especially the pulse-type noise therein, seriously interferes carrier communication, so it is necessary to grasp the characteristics of the photovoltaic array channel noise. Photovoltaic array channel noise modeling is a key process when conducting anti-noise immunity tests of monitoring equipment. Based on the time-domain waveform of photovoltaic series channel noise which is measured in a photovoltaic power station, this paper proposes a photovoltaic array noise modeling method of Wavelet Peak-Type Markov chain, and studies the influence on modeling accuracy when different mother wavelets are adopted for modeling. From the simulation results, root mean square errors of the predicted output for Haar, Biorthogonal and Daubechies wavelet-based function modeling case are 0.9614 V, 1.4915 V and 0.7928 V, respectively, validating that Daubechies wavelet-based function is the best wavelet-based function of modeling. In the case that the peak of original noise reaches 20 V, the predicted mean absolute error of this model is only 0.4926 V, which not only verifies the applicability of the Wavelet Peak-Type Markov chain model to the photovoltaic array channel noise, but also verifies the applicability to the pulse-type noise.