Among the severe plastic deformation techniques, the equal channel angular pressing (ECAP) has drastically improved the mechanical properties of the processed alloys. However, information regarding friction phenomenon, which modifies the deformation at the surface and the heterogeneity microstrain state produced by the process itself, is still scarce. In the present work, the deformation heterogeneity and the friction effect, at the surface in the bulk material of the 6061-T6 aluminum alloy processed by ECAP, is presented and discussed. The residual stress (RS) measurements were performed by means of X-Ray diffraction. By means of synchrotron diffraction, volumetric sections of the ECAPed samples were characterized. Finite element analysis showed a good agreement with the experimentally obtained residual stress and microhardness mapping results. The study also showed that the highest deformation zones were located at the outer parts of the deformed samples (top and bottom), while the inner zone showed strain oscillations of up to 49±2 MPa.